menu

Posts Tagged #NGINX

NGINX is a high-performance and versatile web server and reverse proxy.

Updated Posted by Arnon Erba in How-To Guides on .

Let’s Encrypt has steadily improved since its public debut in late 2015. Certbot, the most popular Let’s Encrypt client, is available for a wide variety of Linux distributions, making it easy to integrate Let’s Encrypt with many common web server configurations. However, because of this broad support, and because Certbot offers many internal options, there are several different ways to integrate Certbot with Nginx.

If you run Certbot with the --nginx flag, it will automatically make whatever changes are necessary to your Nginx configuration to enable SSL/TLS for your website. On the other hand, if you’d prefer to handle the Nginx configuration separately, you can run Certbot with the --webroot flag. In this mode, Certbot will still fetch a certificate, but it’s up to you to integrate it with Nginx.

Once you’ve obtained certificates from Let’s Encrypt, you’ll need to set up a method to automatically renew them, since they expire after just 90 days. On Ubuntu 18.04, the “certbot” package from the Ubuntu repositories includes an automatic renewal framework right out of the box. However, you’ll also need to reload your web server so it can actually serve the renewed certificates. The packaged renewal scripts on Ubuntu won’t restart Nginx unless you used the --nginx flag to request certificates in the first place. If you’re using --webroot or some other method, there’s an additional important step to take.

Automatically Restarting Nginx

On Ubuntu 18.04, Certbot comes with two automated methods for renewing certificates: a cron job, located at /etc/cron.d/certbot, and a systemd timer. The cron job is set to run every 12 hours but only takes effect if systemd is not active. Instead, the systemd timer (visible in the output of systemctl list-timers) works in tandem with the certbot systemd service to handle certificate renewals.

Instead of modifying the cron job or the systemd service, we can change Certbot’s renewal behavior by editing a config file. Add the following line to /etc/letsencrypt/cli.ini:

deploy-hook = systemctl reload nginx

This will cause Certbot to reload Nginx after it renews a certificate. With the deploy-hook option, Certbot will only reload Nginx when a certificate is actually renewed, not every time the Certbot renewal check runs. Ed: A previous version of this post recommended using renew-hook instead. This option has been superseded by deploy-hook.

You can verify that your changes are working by running certbot renew --dry-run. This will not renew any certificates but will tell you if your deploy-hook command is being picked up by Certbot.

A Little Background Information

If you’re new to Let’s Encrypt, and you’re wondering why you need to automatically renew your certificates and restart your web server when you get new ones, it’s a good thing you’re here. While “traditional” SSL/TLS certificates are manually requested and can be valid for up to two years, certificates from Let’s Encrypt are only valid for 90 days. In their blog post, the Let’s Encrypt team explains their reasoning behind such short certificate lifetimes: they limit the time period for damage to be caused by stolen keys or mis-issued certificates, and they heavily encourage automation, which is key to the success of the Let’s Encrypt model.

This means that you’re going to need to automatically renew your certificates in order to take full advantage of Let’s Encrypt. Fortunately, since this is how Let’s Encrypt is designed to work, auto-renewal functionality is built directly into Certbot, the recommended ACME client for Let’s Encrypt.

A slightly less obvious question is why you’d want to automatically restart your web server as well. The answer is simple: web servers, such as Apache or Nginx, don’t read your SSL/TLS certificates directly from disk every time they need them. Instead, they load them into memory along with the rest of the web server configuration. This is great, and perfectly normal, since reading the certificates from disk would be horribly inefficient. However, it means that updating (or renewing) a certificate with Let’s Encrypt won’t directly change the certificate that Apache/Nginx serves when a page is requested. Instead, the web server must be restarted in order to load the new certificate into memory.

Sources

Updated Posted by Arnon Erba in Server Logs Explained on .

Some log entries are particularly bizarre, like the one we’ll be looking at today:

169.229.3.91 - - [26/Jun/2016:00:35:26 -0700] "\xD5H\xC5p*\xB7:\x8F\x91\x8A\xE1\xAA\xE0p\xD9\xF2[;\xAE\xE7c\xF7\x9C\xAB~\x98\xCB\xAD\xCB\xBE\xCE\xED\xAF\xEC\x8B\x19\xC6\x08D\xEB\xA8\x91\x1De\x10\x18 u\x01zHj\x00\x8D|\x15\x8B;\x98\x08RaSH" 400 166 "-" "-"

My server responded with 400 Bad Request, but the most interesting part is the giant $request portion, which doesn’t include any of the normal components you would expect in an HTTP request:

\xD5H\xC5p*\xB7:\x8F\x91\x8A\xE1\xAA\xE0p\xD9\xF2[;\xAE\xE7c\xF7\x9C\xAB~\x98\xCB\xAD\xCB\xBE\xCE\xED\xAF\xEC\x8B\x19\xC6\x08D\xEB\xA8\x91\x1De\x10\x18 u\x01zHj\x00\x8D|\x15\x8B;\x98\x08RaSH

Note: See my first Server Logs Explained post for an example of how to interpret the entire log entry.

Wait, What?

If your first thought was that this looks like 64 bytes of garbage, then you’d be exactly right. As it turns out, I wasn’t the first person to see one of these bizarre log entries. According to this Information Security StackExchange question and answer, this server request is from an Internet-wide research scan led by the Electrical Engineering and Computer Sciences (EECS) department at the University of California at Berkeley.

A reverse DNS lookup of the IP address led to an illuminating hostname, researchscan1.EECS.Berkeley.EDU. It turns out there’s actually several machines related to the project:

  • 169.229.3.90, or researchscan0.EECS.Berkeley.EDU
  • 169.229.3.91, or researchscan1.EECS.Berkeley.EDU
  • 169.229.3.92, or researchscan2.EECS.Berkeley.EDU
  • 169.229.3.93, or researchscan3.EECS.Berkeley.EDU
  • 169.229.3.94, or researchscan4.EECS.Berkeley.EDU

If you access any of those IP addresses or hostnames in a web browser, you’ll see a brief description of the project. However, according to this answer on StackExchange, the text on those webpages has changed over time, so the most concise explanation comes in the form of a quote from the project leaders at Berkeley that’s reproduced in that answer:

We are performing a measurement study of a particular phenomenon on the Internet. To accurately asses the behavior we’re performing a daily scan of the IPv4 space by sending a single benign packet to every IP on port 80 consisting of 64 random bytes of data. […] No, we are not attempting to gain unauthorized access. […] It’s simply randomly generated data that conforms to a certain set of criteria.

I contacted the project team a few months ago as well, but have not heard anything back. Given that the StackExchange answer and my log entry both date back to 2016, it’s possible that the research project is already over and is now just Internet history. Either way, it’s interesting to finally know what it is.

Updated Posted by Arnon Erba in Server Logs Explained on .

A couple weeks ago, I covered what a WordPress brute-force attack looks like. However, you may have realized that trying an unlimited number of passwords is futile if you don’t know any valid usernames to guess passwords for. Fortunately for crackers, there’s a simple way to abuse the WordPress “pretty permalinks” feature to obtain valid usernames for a WordPress installation. Fortunately for us, there’s a simple way to block this with Nginx.

The Logs

Like a brute-force attack, a user enumeration attempt is usually pretty easy to spot. The logs usually start out like this:

203.0.113.42 - - [23/Jun/2016:17:04:11 -0700] "GET /?author=1 HTTP/1.1" 302 154 "-" "-"

And then continue like this…

203.0.113.42 - - [23/Jun/2016:17:04:12 -0700] "GET /?author=2 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:13 -0700] "GET /?author=3 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:15 -0700] "GET /?author=4 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:16 -0700] "GET /?author=5 HTTP/1.1" 302 154 "-" "-"

…until the cracker gives up.

203.0.113.42 - - [23/Jun/2016:17:04:18 -0700] "GET /?author=6 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:19 -0700] "GET /?author=7 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:20 -0700] "GET /?author=8 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:22 -0700] "GET /?author=9 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:23 -0700] "GET /?author=10 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:25 -0700] "GET /?author=11 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:26 -0700] "GET /?author=12 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:28 -0700] "GET /?author=13 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:29 -0700] "GET /?author=14 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:30 -0700] "GET /?author=15 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:32 -0700] "GET /?author=16 HTTP/1.1" 302 154 "-" "-"
203.0.113.42 - - [23/Jun/2016:17:04:33 -0700] "GET /?author=17 HTTP/1.1" 302 154 "-" "-"

Why This Works

By default, WordPress uses query strings as permalinks, such as:

http://example.com/?p=123

This example permalink would display a post with the ID number “123”. The post ID is generated when a new post is created. Query strings make for “ugly” permalinks, however, so WordPress allows you to enable “pretty permalinks” using Apache mod_rewrite or a custom try_files directive in Nginx. With “pretty permalinks” enabled, WordPress performs an HTTP 301 redirect from the “ugly” permalink to the “pretty permalink” configured on the Settings>Permalinks screen.

WordPress doesn’t just have IDs for posts, though. Every WordPress user, or author, has a unique ID that maps to their archive page, which is a list of all the posts that they have created. “Ugly” author permalinks look like:

http://example.com/?author=1

When pretty permalinks are enabled, the author archive page looks like:

http://example.com/author/username

This reveals the author’s WordPress username. A simple script can easily enumerate all the usernames on a WordPress site by trying ?author= with sequential numbers, as we saw in the log excerpts above.

Mitigating WordPress User Enumeration Attempts

We can block user enumeration on two levels: by redirecting the “ugly” permalinks, or by redirecting the /author/ pages entirely. Keep in mind that even if you disable the /author/ pages, your username can be discovered through other methods, and you should assume it is publicly available knowledge. However, we can make it difficult for the public to obtain that knowledge.

Disable query-string based user enumeration

A simple if statement works to disable user enumeration using query strings (or “ugly” permalinks). This is a “safe” if statement in Nginx (see the infamous If Is Evil page) since we are using it with a return statement.

if ($args ~ "^/?author=([0-9]*)") {
        return 302 $scheme://$server_name;
}

This code uses a simple regex, or regular expression, to match any URIs that end in /?author= plus a number. Here’s how it works:

$args is an Nginx variable for the query string
~ indicates that we want Nginx to perform a case-sensitive regex match using the regular expression inside the double quotation marks
^ (the carat) indicates the beginning of the path
/?author= is the fixed part of the path
([0-9]*) is a capturing group that matches any combination of numbers between 0 and 9

The return statement then redirects any URIs that fit the pattern.

Disable WordPress author pages entirely

We can add a simple location block to disable the author pages entirely. This solution is a bit redundant, because you would have to already know the author’s username to access their /author/ archive page, but this is useful if you don’t want author archive pages on your blog for some reason.

Note: this solution, by itself, does not prevent user enumeration, because the intermediary step between the query string and the author archive page pretty permalink will not be hidden. In other words, the query string will redirect to the archive page, revealing the username, and then will redirect based on the code below.

location ~ ^/author/(.*)$ {
        return 302 $scheme://$server_name;
}

~ starts a case-sensitive regex match, like above
^ starts the path we want to match
/author/ indicates we want paths beginning with /author/ to be matched
(.*) is a capturing group that matches any character except newlines
$ marks the end of the path

If a URI is matched, it is redirected to the root server name using return, like above.

Updated Posted by Arnon Erba in Server Logs Explained on .

There are a couple different ways that crackers will try to get into your WordPress installation, and one of them is by using a plain old brute-force attack. This kind of attack requires nothing more than a freely available exploit toolkit, and is not difficult to detect in the server logs. In the first section of this post, I’m going to give an example of what a brute force attack looks like, and then to make things more interesting I’ll discuss some techniques used to mitigate them using Nginx.

The Logs

As you would guess, when one computer makes hundreds of requests for a resource in quick succession, it leaves some pretty serious traces in the server logs (these are real logs, but I removed the server name):

203.0.113.42 - - [22/Jun/2016:19:18:58 -0700] "POST /wp-login.php HTTP/1.1" 200 3848 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"
203.0.113.42 - - [22/Jun/2016:19:18:59 -0700] "POST /wp-login.php HTTP/1.1" 200 3848 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"
203.0.113.42 - - [22/Jun/2016:19:18:59 -0700] "POST /wp-login.php HTTP/1.1" 429 0 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"
203.0.113.42 - - [22/Jun/2016:19:19:00 -0700] "POST /wp-login.php HTTP/1.1" 429 0 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"
203.0.113.42 - - [22/Jun/2016:19:19:00 -0700] "POST /wp-login.php HTTP/1.1" 429 0 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"
203.0.113.42 - - [22/Jun/2016:19:19:00 -0700] "POST /wp-login.php HTTP/1.1" 429 0 "http://www.example.com/wp-login.php" "Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 6.1; 125LA; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)"

Here’s a couple things about these requests that make it obvious that this is a brute-force attack (other than the fact that they go on for about half an hour).

  1. The HTTP method is POST, which indicates data is being sent to the server (i.e. the actual password guesses).
  2. The resource requested is /wp-login.php, which is the default WordPress login page and should rarely be requested, even by legitimate users.

If you look more closely, however, you’ll see something interesting: the HTTP response code that the server returns starts off as 200 OK, but quickly transitions to 429 Too Many Requests. This is one method of fending off brute force attacks with Nginx.

Mitigating WordPress Brute-Force Attacks

Fortunately, WordPress brute-force attacks are not that difficult to defend against without the use of plugins or additional software. We can:

  1. Restrict access to the login page to a curated list of IP addresses,
  2. Explicitly block the IP addresses of known brute-force offenders with Nginx or with a firewall,
  3. Password-protect the login page using HTTP Basic Authentication,
  4. Or, my personal favorite: set up rate-limiting with Nginx to cut down on how many requests attackers can make in a certain period of time.

Restrict Access to Certain IP Addresses

Arguably, the best way to mitigate brute-force attacks is to restrict access to the WordPress login page to only known good IP addresses. Here’s what that looks like with Nginx:

location = /wp-login.php {
    allow 192.168.1.2;
    allow 192.168.1.50;
    deny all;
    # add your PHP fastcgi config here
}

This location block explicitly targets the /wp-login.php page and only allows clients using the IP addresses 192.168.1.2 and 192.168.1.50 to access it. All other requests will be met with a 403 Forbidden error message. Keep in mind you will need to add your PHP fastcgi config to this location block as well so that Nginx knows to pass legitimate requests back to PHP. If you’re not familiar with how to do this, either consult the Nginx docs regarding PHP or keep an eye out for a newer post.

This method ensures that attackers will never get access to the login page, but is difficult to maintain if legitimate WordPress users do not have static IP addresses.

Deny Access from Certain IP Addresses

Another solution is to explicitly block brute-force offenders. You can block certain IP addresses from accessing the login page with:

location = /wp-login.php {
    deny 203.0.113.42;
    # add your PHP fastcgi config here
}

If you are familiar with configuring firewalls, you can use firewall commands to block the IP address from accessing anything on your server at all.

While blocking specific IP addresses can be useful, I don’t recommend using this as your only line of defense. For one, any IP address used in a brute force attack is almost certainly a VPN, proxy, or bot IP address. By blocking these, you risk denying access to legitimate users, even if that risk is slight. The main concern is that maintaining a list of IP addresses is tedious and unwieldy and is not a good long-term solution. That’s not to say this approach is useless, however, as you may want to use it in tandem with another one.

With that in mind, the next possible solution is adding a second layer of protection to the WordPress login page with HTTP Basic Auth.

Restrict Access Using HTTP Basic Auth

There are two steps to using HTTP Basic Auth with WordPress and Nginx.

  1. Create the password file
  2. Configure Nginx

I am going to skip the first step in this post, as there are many good existing guides on using openssl or apache2-utils to create a password file (see here or here).

The second step, configuring Nginx, is fairly simple. Just add two lines to your wp-login location block:

location = /wp-login.php {
    auth_basic "Restricted Content";
    auth_basic_user_file /path/to/.password_file;
    # add your PHP fastcgi config here
}

You can change “Restricted Content” to any phrase you want, as it will be the message that end-users see when they attempt to access the login page. Make sure you enter the correct path to your password file you created as well.

While password-protecting the login page is a valid solution, it has the potential to overly complicate the login process for legitimate users.

Using Rate Limiting in Nginx

Nginx has some great documentation on how to implement rate limiting, but I am going to provide an example of how to optimize it for WordPress. Setting up rate limiting in Nginx is simple, and only requires two components:

  1. We must define a zone in the main nginx.conf file.
  2. We must implement that zone in the WordPress login location block.

To define the zone, we use limit_req_zone and, optionally, limit_req_status. These directives go inside the http block of the main nginx.conf configuration file.

http {
     limit_req_zone $binary_remote_addr zone=wordpress:10m rate=15r/m;
     limit_req_status 429;
}

The above snippet defines a 10 MB zone named “wordpress” that allows a maximum of 15 requests per minute from any one IP address. The limit_req_zone requires a variable, or key. In this case, the key is $binary_remote_addr, or the IP address of the client. Nginx will use a maximum of 10 MB of memory to store the keys, and if a key exceeds the maximum number of allowed requests, Nginx will terminate the connection and return the status code defined in limit_req_status. The default code is 503 Service Unavailable, but I prefer the more specific 429 Too Many Requests response. Keep in mind that Nginx will display a blank page to the client for non-standard HTTP codes if you have not set a custom error page using the error_page directive.

You can name the zone anything you want (it is named “wordpress” in the example above) and you can also define any rate limit you feel is appropriate. I found that allowing a maximum of 15 requests per minute is restrictive enough to hamper a brute-force attack but is permissive enough not to interfere with end-users who legitimately mistyped their passwords.

To actually use the zone, we must implement it by adding this code to the WordPress login location block:

location = /wp-login.php {
    limit_req zone=wordpress;
    # add your PHP fastcgi config here
}

This tells Nginx to limit requests to the /wp-login.php page using the parameters specified in the zone we defined above. Make sure you replace “wordpress” with whatever you named your zone in the previous step. Restart or reload Nginx and rapidly refresh your login page to test if the new brute-force protection is working. If you refresh faster than the rate you defined in limit_req_zone, the server will return the status code defined in limit_req_status.

Obligatory note: if you’ve read other guides on how to set up rate limiting with Nginx, you may have seen other syntaxes used, such as limit_req zone=one burst=1 nodelay. The burst and nodelay options are more complex and allow you to control what happens to excess requests. They are not necessary in this context, since we want any excess brute-force attempts to be immediately rejected, but I would highly encourage you to read the documentation for them here.

Conclusion

This is by no means an exhaustive list for preventing brute-force attacks. Other solutions exist in the form of WordPress plugins or intrusion prevention systems such as Fail2ban. However, a lot can be accomplished by correctly configuring Nginx, and the less WordPress plugins you have installed, the better.

Updated Posted by Arnon Erba in Server Logs Explained on .

(Editor’s note: The IP addresses in this post have been replaced with reserved IP addresses for documentation purposes. This post has been updated since publication to include more information about the w00tw00t scan.)

What is w00tw00t.at.blackhats.romanian.anti-sec?

If you read last week’s post, you’ll remember that I promised to post a more interesting log excerpt this week. This one is from a pretty common bot scan that you’ll see if you’re running a web server for any length of time, and while it looks scary at first, you likely don’t need to worry if your server is configured properly.

203.0.113.42 - - [21/Jun/2016:06:35:55 -0400] "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 400 0 "-" "ZmEu"

In this log excerpt, we see that an IP address that maps to the Netherlands made a GET request for /w00tw00t.at.blackhats.romanian.anti-sec:), a nonexistent resource. However, the server returned a 400 Bad Request error rather than a 404 Not Found.

What This Means for You

Because I didn’t grab the accompanying error log entry that explains why Nginx returned a 400 error, I’m going to skip right to the explanation (spoiler alert). The w00tw00t entries are created by the ZmEu or DFind vulnerability scanners as part of an attempt at banner grabbing. Banner grabbing is an enumeration technique, and in this case the scanner was searching for information about my server that could reveal possible exploits. The process goes something like this: a bot, possibly an infected computer or a proxy server, sends an HTTP GET request with a bogus URI in the hope that the targeted server will respond with some information about its configuration. In my case, Nginx determined that the HTTP request was malformed in some way, so it rejected it with a 400 Bad Request status code. Most likely, the request was missing the Host header, in the hope that my server would fill it in or provide some other information.

The bottom line is that if you’re running a web server, you’re going to come across these requests in your server logs at some point. The Internet is frequently scanned by script kiddies looking for various vulnerabilities, but as long as your server returns a 400 error for any w00tw00t requests, you shouldn’t have to worry. There are a few other variants of this scan as well, including one that makes a request for /w00tw00t.at.ISC.SANS.DFind:).

Further Reading

If you want to read more about the w00tw00t scan, here’s some extra resources for more information:

Updated Posted by Arnon Erba in Server Logs Explained on .

In this post, I’m going to go over some background information about the web server logs I’ll be posting, and then I’ll go over a basic example of what traffic from Googlebot should look like.

Log Format

The logs I’ll be posting will be in the default combined format for Nginx, which looks like this:

$remote_addr - $remote_user [$time_local] "$request" $status $bytes_sent "$http_referer" "$http_user_agent"

Let’s break that down. Each section that’s prefaced by a dollar sign indicates one piece of information that will be logged. Nginx will collect this information and then concatenate it so that it is easy to scan. If any of the requested pieces of information are not provided, Nginx will replace it with a hyphen. Here is what each bit of information we’ll be collecting means:

$remote_addr: The IP address of the client.
- (The hyphen here is just a placeholder for readability)
$remote_user: The authenticated user, if one exists.
$time_local: The time the request was processed, based on the server’s time zone settings.
$request: The requested resource. This will include the HTTP method used.
$status: The status code that the web server returned.
$bytes_sent: The number of bytes the server sent to the client.
$http_referer: The referrer URL, or the webpage that sent the visitor to your server using a link.
$http_user_agent: Information regarding what browser or operating system was used to make the request.

Fun fact: You may have noticed that “referer” is spelled incorrectly. This is a misspelling in the actual HTTP specification and you can learn more about that here.

Googlebot Traffic

Now let’s break down a real log, taken from one of my servers. I’m going show how each piece of information in the log matches up to the reference above.

66.249.65.115 - - [18/Jun/2016:08:36:33 -0400] "GET /about-us HTTP/1.1" 200 2233 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

$remote_addr is 66.249.65.115. This is a real Googlebot IP address, so we can be fairly certain this is a legitimate request.
$remote_user: Googlebot was not logged into the server, so this field is blank.
$time_local: The request came in at 8:36 AM on June 18th, 2016.
$request: Googlebot requested the /about-us page using a GET request.
$status: The server responded with an HTTP 200 OK status code, indicating that it was able to successfully complete the request.
$bytes_sent: The server sent back 2,233 bytes.
$http_referer: Googlebot did not list a referrer URL.
$http_user_agent: This custom user agent listing tells us that the request was made by Googlebot and not by a typical web browser.

Join us next week for an explanation of some less benign requests.